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CONTRIBUTIONS TO THE THEORY OF
ACCIDENT PRONENESS

1. AN OPTIMISTIC MODEL OF THE CORRELATION BETWEEN
LIGHT AND SEVERE ACCIDENTS '

BY
GRACE E. BATES AND JERZY NEYMAN

1. Introduction. Since the pioneer work of Greeawood apd Yule {1} and of Miss
Newbold [2], the following assumptions regarding accident proneness are customar-
ily made: e

a) To each individual exposed to a certain system of risks and to each kind of
accident there corresponds a Poisson frequency function,

AN

(1) pX(kIM = k!

of the number X of accidents of this particular kind incurred by this individual per
unit time.

b) The value of the parameter A varies from one individual of the population to
another and characterizes his specific accident proneness.

¢) More specifically, it is frequently assumed that for an individual randomly
selected from a given population exposed to a fixed system of risks, the parameter A
is a particular value of a random variable A with probability density function

@) , p, (z) = I‘?a) e

where the constants « > 0 and 8 > 0 depend on the population considered and
on the kind of accidents.

d) It is customary to assume that, although with the passing of time the value
of \ corresponding to a given individual may change, this change is slight only and
an individual who is particularly prone to accidents in his youth remains a bad risk
more or less indefinitely. '

The evidence in favor of (a), (b) and (d) frequently appears quite convincing.
Therefore, in selecting personnel for certain hazardous occupations, attempts are
made (Farmer and Chambers [3]) to eliminate individuals who are particularly
accident prone by employing only those who in the past had no accidents of the
particular kind under consideration or only a few such accidents. Also (Ove Lund-
berg [4]) attempts are made to use records of accidents sustained and of cases of
illness to adjust the premiums in accident and health insurance to actual risks
attached to particular individuals. In each instance, attention is directed to acci-
dents or cases of sickness occurring in two different periods of time (past and future

This work, be under contract with the School of Aviation Medicine, U.S. Air Force, was

completed with partial support of the Office of Naval Research. Dr. Bates, a member of the
faculty of Mount Holyoke College, worked at the University of California on this project.

! Numbers in brackets refer to references at the end of the paper.
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experience) but belonging to the same category. The problem studied is essentially
whether or not the number of accidents of a specified kind observed in the past has
a predictive value for the number of accidents of the same kind to be observed in
the future.

This question is very relevant in many cases. However, for certain purposes it is
not completely relevant and must be modified. Such, for example, is the case when
it is desired to select appropriate personnel for highly hazardous occupations (for
example, airplane pilots) where the first accident observed is frequently also the last.
For this very reason, in selecting the personnel it is impracticable to judge the indi-
viduals on their past experience with respect to the particular severe accidents and
the most one can do is to see whether or not the frequency of mild accidents incurred
in the past is relevant from the point of view of severe accidents to which the indi-
vidual may be exposed in the future.

Pursuing this direction of thought we shall study not one but two (or more;

further generalization is. immediate) random variables, say X and Y, representing »

the numbers of accidents incurred by the same individual, either within the same
period of time or in two different periods. The variable ¥ will mean the number of
“ predictor’’ accidents, which we may hope to be able to observe prior to the decision
of whether or not the given individual is suitable for the particular employment.
On the other hand, the random variable X will be interpreted as the number of severe
accidents to be observed in the future.

As in the theory of Greenwood, Yule, and Newbold, we shall postulate that, for
each individual, the variables X and Y are independent and follow two distinct
Poisson distributions with parameters A and i which characterize the proneness of
this individual to the two kinds of accidents. Furthermore, we shall postulate that
the values of A and g vary from one individual to another.

In order that the value of ¥ can serve as a predictor regarding the value of \ it is
necessary that \ and ¢ be correlated in the population considered and the closer the
correlation, the greater the value of ¥ as a predictor. Whether or not the constants

e Wwwen ‘,__gnhm

aitiyiine .
hinihiod

A and p, corresponding to two different kinds of accidents, are closely correlated is a _ ;

question of fact and can be answered only by using appropriate empirical data.

The main purpose of the present paper is to study the distribution of X and ¥ on .

the following somewhat far-reaching hypothesis. This hypothesis will be frequently
referred to in this paper so it will be conveniently labeled the fundamental hypotheszs
It involves two assumptions:

7) the expectation u of the number of predictor accidents is a fixed multiple of the
expectation N of the number of severe accidents, z = a)\, where ¢ is a constant;

7%%) in the population studied the distribution of A follows the Pearson type III
law assumed by Greenwood, Yule and Newbold, as deseribed in (¢) above.

It will be seen that assurnption (7) is very strong and, a priort, one is inclined to
doubt whether it could ever be exactly satisfied. Surprisingly enough, the theoretical
joint distribution deduced from the fundamental hypothesis was found to give a
satisfactory fit to several empirical distributions. It follows, then, that the measures
of success of the selection for small values of A using ¥ as predictor, deduced in this
paper, may not be far off in relation to real practical problems. Needless to say,
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ucal applications of these formulae must be preceded by an empirical test of the
wiiiity of the model studied with respect to the particular accidents which may
ome under consideration. ' N
! Assumption (4Z) is also very strong. However, any other assumption specifying
5 -he distribution of A would be equally strong but, if one wants to obtain numerically
. frequency function of X and Y, it is unavoidable to ascribe a definite form to
rhe distribution of A. The adoption of the Pearson type III law is justified both by -
irs flex:bility as an interpolation formula and by the tradition established by Green-
wood, Yule, and Newbold. However; in the course of the study it appeared that
some properties of the multivariate distribution of the numbers of accidents satis-
iving assumption (z) are independent of the actual form of the distribution of A.
Also. they have an immediate bearing on the problem of selection of personnel and
for these two reasons are particularly interesting.

Part II of the paper deals with the possibility of a deeper insight into the nature -

s

e : of the mechanism behind the observed frequency distribution of the number of
: accidents from one individual to another. _
{ ; The specific problem considered is that of the distinction between the Greenwood—
1 ; Yuie-Newbold model described here and the model of Pélya (slightly generalized),
L assuming that the probabilities of accidents in a specified time interval not only vary
s = with the duration of this time interval, but depend upon the number of accidents

previously sustained (“contagion’) and on the length of exposure to accidents ..
which is interpreted as a measure of the experience gained in the particular kind
of work.

The details of the plan of Part I of the paper are as follows.

In section 2, the problem of the joint distribution of severe and light accidents is
considered in a form which is a little more general than that envisaged above.
Assuming the fundamental hypothesis, we consider not two different kinds of acci-
dents but an arbitrary number s 2 2, of which the first is treated as “severe acci-
dents” and the remaining 8 — 1 as different kinds of light predictor accidents.

Let X;, X, -+ -, X, be the numbers of accidents of each kind. It is found that
these random variables follow a joint distribution which the authors do not re-
member having seen before and which they propose to term the multivariate nega-
tive binomial distribution. This distribution possesses several remarkable proper-
ties, similar to those of the multivariate normal distribution. The more important
of these properties refer to any group of m < s variables out of the s considered.

1) Whatever the group of m variables, for example, X, X, - - -, X, the marginal
joint distribution of this group is an m-variate negative binomial.

12) The joint distribution of X;, X, - - -, X and of the sum, say x = X1
+ X2+ - - - + X, isan (m + 1)-variate negative binomial distribution.

1) The conditional joint distribution of Xy, X3, + - +, X, given that the other
s — m variables have assumed specified values, is an m-variate negative binomial
distribution and depends only on the value z of the sum x. -

w) The regression of X; on Xa1, Xase, * - +, X, islinear, form = 1,2, - - -,s — L.

Because of property (##7), the general case of $ — 1 2 1 kinds of light accidents
reduces to the simplest case involving only two categories of accidents, severe acci-

€t ot M

om0 w
i

R QT pacan

<

—
s Lo b B L PRI R i

Rk



;
:
9

R RS

N Rl D

A ek ALl e, o e B Ba e
R R ER NI S 1 2o T L e T2

e s
5 FEPNE IR S

»
oty

s

v

LS et #S

TR

&9

Za R

e

A University of California Publications in Statistics

categories of light aceidents originally considered.

Secrion 3 contains formulae leading to the estimates of the parameters in the bi-

variate negative binomial distribution.

Section 4 is given to an empirical test of the fundamental hypothesis. As men-

tioned above, the basic idea is that, for particular individuals in a population, the
expected number of light accidents in an earlier period is a fixed multiple of the
expected number of severe accidents in a subsequent period. Unfortunately, no
empirical data were available with which the authors could test directly whether or
not it is safe to assume this. The best that could be done was to study certain anal-
agous situations for which the data could be obtained. On the whole, the results
of this empirical study are promising.

The fundamental hypothesis is tested on two sets of data, one of which is new. &

Because of the scarcity of published empirical material of this particular kind, the
new data are reproduced in this paper in several tables which may be useful for
further work.

Section 5 is given to the following practical question: assuming the admittedly
far-reaching fundamental hypothesis regarding the close connection between light
and severe accidents, what are the prospects of success in the selection of personnel
using the records of light accidents? It is shown that, in certain cases at least, the
effect of selection must be substantial.

Section 6 outlines methods to be used if and when data on light and on severe
accidents are available. The study of severe accidents differs from that of light
accidents by the fact that severe accidents are frequently not survived by the
victims. Consequently, even if the mode] treated in this paper is strictly applicable
to light and severe accidents, because of the distortions caused by fatal accidents,
the joint distribution of the numbers of light and severe accidents will not be the
bivariate negative binomial. Therefore, any empirical study relating to light and
severe accidents will require an appropriate distribution. Such a distribution, based
on the assumption that the probability of surviving an accident is constant, is given
in section 6. '

Throughout the paper the notation adopted is that of J. Neyman’s recent book
(7.

2. Multivariate distribution of the numbers of accidents. The subject of this
section is the joint distribution of an arbitrary number s of random variables X,
X, - - -, X,, where X represents the number of accidents of the ¢th kind, incurred
by an individual randomly drawn from a population. :

The method used is that of probability generating functions, introduced by La-
place. A modern presentation of the theory is given by Feller [6]. The probability
generating function is defined for sets of random variables all capable of assuming
only nonnegative integer values. It will be denoted by G with subscripts indicating
the random wariables to which it refers. The arguments of G will always be assumed
not to exceed unity in absolute value so as to insure the convergence of the series
representing G. When dealing with conditional distributions, the hypotheses on
which these distributions are based will be symbolized to the right of the vertical
bar that follows the arguments of the probability generating function. Thus the

derts and light accidents, with the latter category embracing all the s —1 different ‘
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conditional brobabiﬁty generating function of the random variables X;, X, - - -, X,,
given a hypothesis A will be denoted and defined as

 uH) = E’[guf‘[ HJ

= Z P{(X: = n) (X2'=m) -

ALBge. oo By,

(X, = n.)} I.Iu';t

where the summatxon ‘extends over all nonnegative values of eachn; =0,1,2,- - -,

fort=1,2,
In the followmg we shall use several properties of probability generating functxons

. which are direct consequences of the above definition.

Generalizing the conditions of the problem studied by Greenwood, Yule, and
Newbold, we assume that to the population studied and the s different kinds of
accidents there correspond s positive numbers a; = 1, as, a3, - - -, &. Thus, these
pumbers are the same for each individual of the population. We assume further that
to every individual of the population there corresponds a positive number ),
measuring his particular proneness to accidents. For an individual to be randomly
drawn from the population, this number is interpreted as a particular value of a
random variable A. The distribution of A will be denoted by F(\) = P{A S A}.
Some of the results obtained are independent of any assumption regarding F(A)

" except that F(0) = 0 so that A is necessarily a positive random variable. However,

most of the results are based on the assumption that the distribution function of A
has the particular form postulated by Greenwood, Yule, and Newbold, representing
the integral of the probability density (2).

Given a particular individual of the population, that is, given a fixed value of ),
we shall assume that the numbers of accidents X, X, - - -, X, are mutually inde-
pendent and that each follows a Poisson law with the expectation of X; equal to aa,
i=1,2 - s It follows that, given A, the conditional joint probability generating
function of X, X, - - -, X, is

@) Gx..x,.. xn | = exp{)\ Z. au; — 1) }

Replacing in_(4) r by the random variable A and taking the expectation with

_ respect to the distribution of this variable, we obtain the absolute probability gener-

ating function,
(5) Cr,x,.... x( e o o sy %) = E(Gr, x,....x,Gotn - - 2| A)]

’fﬂ exp {x z, aius ~ 1)}dF ™

=¢[ 2':0-(14-"' l)],

A




"+ riscam T g N e o R T oo \

R T AT gL it e
i v = e i ﬂ?%"""‘"*{ﬁﬂ‘ e " "i;g“"”k; N
220 Umiversity of California Publications in Statistics
where $(¢) is <he Laplace transform of the distribution F(}),
®) (1) = f” e* dF (V) .
N 2 e
P It will be seen that for ¢ < 0 the function ¢(¢) is indefinitely differentiable.
i 7 The Laplace transform of the distribution defined by (2) is, say
‘ . ‘ Ai - * = ) b = -— —t N
. ; ; @ ¢*(t) j; ¢ p () dA [1 ﬁ] .
: B Thus, on the assumption that (2) represents the probability density of A, the joint '-5;
| B p probability generating function of X, X5, - - -, X, is, say ; itho.
! - k¢ ,;‘ ) ) o .-
I (8) @@m&m%~nm=P+Zthﬂ, Y
i i B ¥, =1 s
x r 4 where, for the sake of simplicity in formulae, b; = @;/8,¢ = 1,2, - -, s. s =
: } § - 8 Owing to the particular form of the probability generating function (8), the cor- - t:mng
- a2l B responding distribution of X, X3, - « -, X, will be called the s-variate negative bi- TR
| _ 2 1 nomial distribution. Easy expansion of (8) in powers of u, us, * - -, %, gives 5) e
i I k B *
i : 9 P{(X: =n) (X2 =1ny) - - - (X, =n,)} .
; -

o SO i KA AT B

- - ™ I'la +n) “
[1+§b] T II

' wheren =y +n. + - - - +n,and

,iﬁ; (10) JUNQIES TR
R KN 1+ 56 B+ X
| L ¥ =1 fo=1

B The distributions defined by (5) and (8) possess the following remarkable properties.

H B Let 1, 7, - + -, 7a be any permutation of numbers 1, 2, - - -, s and let m be any 3

' - positive integer less than s. E
TuroreM 1. If the random variables Xy, X, - - -, X, follow the multivariate nega- %

tive binomial distribution (8) then the joint distribution of X, Xoy - + +,X,, is also &

- negative binomial.
‘ The probability generatmg function of the marginal distribution of X,,, Xt 3
i “ X, is obtained from (8) by substituting %, ,, = Upe,e =+ -+ =%, = 1. Itis ea.sxly K
o 5 seen that the result of this substitution is a function of the same type with the sum ) s onli
3 i . of mterms o
. 9 ay - To0-u) an <
o . -1
H - :
i replacing in the square brackets the sum of s similar terms and the theorem is proved. ¥ but not on the
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THEOREM 2. Whatever the distribution F(\) of \, given that the sum, say

(12) x= 2 X,

-

has assumed a value n, the condiiional joind distribution of Xy, X, » + « Xoy %3 the multi-
nomaal distribution with the probabnlity generating function

=1 n
(13) thxh___x._l (uy, ugy - -, uo-lg x =n) = [Z dlui'+dl] ’
e} .
with

(14) do= 2 i=1,2-- 5.

Starting with the definition, the generating function

(13) Gx‘x,.. oxx (U, e St v)

]
E [ﬁ-ﬁ (u,v)x-]

thx,“ R (U, usv, + * <, Uptt, 1),

]

and, therefore, because of (5)

(16) prx:'. g JENES (uh Uz, * * 7y Us-ly U) =9 {U Z G — Z a"]
=] -]

=l

In order to obtain the probability generating function (13) it is sufficient to ex-
pand (16) in powers of », to select the coefficient of »* and to divide this coefficient
by its value corresponding to u; = us = « + - = u,; = 1. It is easy to see that the
result of this operation coincides with (13).

THEOREM 3. Whatever be the distribution function F(\) of A, gwen that X,, = n,,
i=m+1,m<+2 - - - s, the conditional distribution of X, forj = 1,2, - -, m,
depends only on the sum

(17) - n = E n,,
-l

but not on the numbers n,, taken separately.
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This theorem escri- -3 a very @ v
dents satisfying sssum-iem {£). - 0 0 tais propery,
the number of severe :cc:dents. 1w, -

nrorerty of ‘he inint distribution of acei- %
" problem of predicting 4%
~e avmeer X of accicents of the first kind,

usmg the numbers. e..: T-H-l; R - X,, of accidents of some s — m other 3
kinds reduces to shat it :*@dmtm v 1nz tne value of the sum, say X
(18) A

Thus, whatever te the relative frequency of the predictor accidents as measured by
the constants am.i, 2m-s, - -
the numbers of these accidents is necessary, and this irrespective of the actual form
of the distribution of A.

Obviously, it will be sufficient to prove theorem 3 for» = 4,7 = 1,2, - - -, s. By &

examining the definition of the probability generating function it is easy to see that

the conditional probability gemerating function of X;, X», - - -, X given that the

other variables Xms1, Xmss, » « +, X, have assumed some specified values Nmqs, Tmiz,

-, m,, Tespectively, is obtained from (3} as a resuit of the two following operations.

a) Expand (5) in powers of Ums1, %m-z, © * *, %, and obtain the coefficient C of the
product

(19) 17 uw .

i

Obviously, € is a function of uy, s, + - -, Um.

b) Divide C by the value of this coefficient corresponding to u, = up = =
Um = 1.
Performing these operations on (5), we obtain
(20) = 6™(9) II
e 1
where ¢™(¢) denotes the nth derivative of ¢ with respect to ¢ and where
(21) t= > aui—=1)= 2 a;= 2 afus— 1)+ r, say .
=1 e~m L =1
It follows that
2) @G | (Xmer = (X, = = 82
(22) 11, .. (w1, s, y Um | (Kmel = Nmer) (X, = 71..)] = ™ ()

It is seen that the right-hand side depends on the sum 7 of the values assumed by
the variables X1, Xmi2, - -+, X, but not on these values taken separately, which
proves theorem 3.

TrEOREM 4. If the variables X,, X, - - -, X, follow the multivariate negative bi-
nomial distribution (8) then, given X, =n. fori =m + 1,m + 2, - - -, 3, the condi~
tional distribution of X,,, X,,, - « -, X, 1s also a negative binomial distribution depend-
ing on the sum n defined by (17).

+, @,, in order 0 predict the value of X, no weighing of 4

1t will be soff:
the nth denvatl

3 e Y -

@) oo  7
mam“th
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, Itwillbes&zﬁcimttoprovetheorem4muningr'.~ =ifori=1,2,- :;é.ﬁ
proof may either be direct, starking fromr (8)-or take into account-(Z%) and evaluate

the nth derivative of (7). We have T ‘
mt’;-.:'é'. 1 P(a + ﬂ) ) t]—(-«)

@ ir T F @

and it follows that

(24) GX.,.I..... .x-[uh Uz, - .' ":uﬂ l (Xm#l = nwu-l) o (Xl = nn)]

[Z _ t]-(u-u)
= -7

= [1 + ie.{i -vu.—)]
v

—{a+n)

with

(25) : e = i

B+ 2
fomrt1

which proves the theorem. ' -

As a result of theorem 3, the conditional distribution of X;, X3, - « -, X, given
Xoatt = Ny, -+, X, = n,, will be identified with the conditional distribution of
the same variables, given that the sum ¥ defined in (18) has assumed the value n
of (17). In particular, the multiple correlation coefficient of X; and Xarty Xmig, » + -,
X,, say p, coincides with the ordinary correlation coefficient of X and ¥ as defined
in (18). In order to study the regression of X; on Xn s, Xoass, ¢ -+, X, or the multiple
correlation p, it will be sufficient to consider the probability generating function of
X, and Y obtainable either from (5) or from (8) by substituting u; = u, uy = 4, =

* = Um = 1a0d Umis = Unsa = - - - = %, = 9. Thus formula (5) gives

(26) Gr,r(,v) = ¢lailu — 1) + A@w — 1)]
where, for short, : :
@7) . A=Y a:.

ol

TaEorEM 5. Whatever the distribution function F()) of A, provided it possesses two

' ﬁrstnwmmts,ﬂwaqwsofﬂuwﬂelationcocﬁcimtpzmmxlmYiagtberdby

. E(X, E(Y) L T
o [ [ [z

174 A

whercylisthe\ezpectati;nofllmditsvarim.
In order to deduce formula (28) we use the familiar relations between the moments
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of the random variables and the derivatives of their Drobablhtv generating :notion
evaluated at the values of arguments equal to unity. In particuinr
' ‘ anl,Y’ i
(29) » E(Xl) = "—au—sm_l =aw0) = au )
) azG.r Y
30) EX) - BX) = — = ale”(0) = alE(yY)
and it follows
@1) ot =all +au, .
Also,
(32) EY) = Ap,, oy = A% + Ay,
and

o PGy o

= | = A2
(33) EX,Y) pr N a4 BE(AY) .
Finally, we get
4
” - [BX, 1) ~ EX) B _ 4o,
s X5 C (el + ) (4o% +p)

which coincides with the second part of (28). In order to obtain the first part of this
formula, we notice that

2
a, a,

BXY _
”i'x aldi + &

(35) 1-
and a similar relation for Y.

Theorem 4 implies important conclusions regarding the possibility of predicting 3

the value X; by using the values assumed by X, X;, - - -, X,.

CoroLLARY 1. If p 73 taken as a conventional measure of precision in predicting the
value of X, from the observed values of Xmi1, Xmyiz, - - -, X, then, whatever be F()\), 1t
18 advantageous lo use as many predictors as posszble that is, it is advantageous lo
takem =1,

This conclusion is the immediate result of the fact that p is an increasing function
of A as defined in (27).

CoroLLARY 2. Whatever the distribution function F()\), and whatever the number of
predictor variables Xmii, Xais, - - -, X,, the correlation p must be smaller than the
upper bound
(36) . p < [1

x,

E(Xo]

depending only on the expectation and on the variance of the predicted variable X,.

Formula (3t
conclusion is &
to predict the -
If the right-ha-
prediction, at L

TaEOREM 6. .
negakive bmomy
(18), 18 lmear,

(3")

’.»ﬂ{w *3p

Under M
function of Xi;:

U = 1 apd e
g

\Tatura.lly‘- o
tional wariance
but increases li:
two: iidefender.
nomial, ete: “~«

3. Eshmsﬁon

section 2 it -was
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Formula (36) is an immediate consequence of the first part of (28). The practical
conclusion is that, before attempting to use the numbers of any accidents in order
to predict the value of X, one should estimate the expectation of X; and its variance.
If the right-hand side of (36) is close to zero then the prospects of attaining a good

- prediction, at least by means of a linear regression equation, are shim.

TrEoREM 6. If the random variables Xy, Xy, - - -, X, jointly follow a multivariate
negatie binomial distribution, then the regression of X; on the sum Y as defined by
(18), 13 linear, and namely

37) EX.| Y =n) - Gletn)
B+ 2 a
F=—neri=1

Under the hypotheses of the theorem, the conditional probability generating
function of X, given ¥ = n, is obtained from (24) by substitutingus = ug = + + - =
un = 1 and we have ‘

(38) . le ('ul l Y = n) = [1 + 91(1 - ul)]—.(ldnl) .

The regression function of X, on ¥ is obtained by differentiating (38) and by setting
u = 1. The result is (37).

Theorems 1, 4, and 6 describe interesting properties of the multivariate negative
binomial distribution whereby it is somewhat similar to the multivariate normal.
Naturally, however, the analogy is far from complete. Thus, for example, the condi-
tional variance of X, given ¥, or given any single variable X, ¢ > 1, is not constant
but increases linearly with the value of the fixed variable. Furthermore, the sum of
two independent negative binomial variables may but need not be a negative bi-
nomial, ete. _

3. Estimation of parameters in the bivariate negative binomial distribution. In
section 2 it was shown that, when the model considered applies, the s-dimensional
problem may be reduced to a two-dimensional problem. In particular, if formula (2)
adequately represents the probability density function of A, then, in order to treat
the problem of predicting the number, say X = z, of severe accidents using any
number of categories of light accidents, it is sufficient to study a bivariate negative
binomial distribution of X and Y, where Y stands for the total number of light
accidents embracing all the s — 1 different categories originally considered. Re-
membering the convention a; = 1, the joint probability generating function of X
and ¥ may be written as

| - ge
(39) Cry @) = i —w ¥ 40 =9

with 4 = a; + & + - - + a,. By expanding (39) in powers of % and v, we obtain
as the coefficient of uby™ _

= I‘a+m+k s m —~(a+me+k)
“0) prp by m) = TEEIAR gtymip 1 g 4 gyt

-
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We shall suppose that » independent observations on the pair (X, ¥) will be made.
The letter n.,» will then denote the random variable representing the numper of pairs
[(X =k), (Y =m)]. The joint frequency function of all the =. ,, . represented by :ne
product, say :

(41) =cII th»(k m) ,
om0 mmy XY
where C stands for a factor depending on the 7z~ but not on the parameters a, 3, and
A, and where
(42) 2 2 Tm=n.
kme) mm=Q

Our problem is to deduce formulae for the maximum likelihood estimates, say .,
p.. and A, of these three parameters. Recent results [8] imply that these estimates
possess the following properties: (3} the estimates are functions of the relative fre-
quencies n.»/n but do not depend otherwise on #; {21} the estimates possess continu-
ous partial derivatives with respect to each relatxve frequency; (i) as a~+=, the
estimates are consistent and asymptotically normal about the true values of the par-
ticular parameters (i) the asymptotic variances of the estimates &, B, and 4, de-
crease as n~! and do not exceed the asymptotic variances of any other estimates
possessing the properties (z), (4%) and (1%7).2

Substituting (40) into (41), taking logarithms and dividing by n, we obtain

43) llog/=Citalogh—(+X+ Dlg@+4+1+Flogd

@ H
+ 2(1 - qu> log (e + #)
taml) . re=(
where C; represents a term independent of the parameters and where

Z k Z Neum o
k=0 mm(

- 1 w. @
(44) Y=>3m2 na,
nu-o e
q L5 n
= = k. (rek) o
LLr

$ Until recently it was bahemd that the asymptotic variances of the maximum hkehhood esti-
mates cannot exceed those of any other consistent and ptotically normal estimates. A con-
jecture to this effect is usually ascribed to R. A. Fisher, w
clumedtheubovemtemntuapropertyofmmumum
see also F. Y. Edgeworth who enunmted in
(with a n:ue restriction on the nature [ the estimate). Mm the proofs of both Edgeworth
and Fisher obv:ot::g lack precisio! ﬂecture was taken for granted and quoted
in many articles booh. Recently J L. Hodges, Jr. [11] has produced examples of consistent
and asymptotically normal estimates, not h"ul’ﬁ:ethe properties (i) and (i), whose asymptotic

variances never exceed those of the

parameter, are actually smaller.

connection,

his paper (9] of 1908 essentially the same conjecture -3

ood estimates and, for some values of the E

Obviou-
X+7Y
Wlt.h re-

(45)

(46)

e

(47)

Equatio.
gt (48)
(49
and the:

(50)

The p
reduced
observed

. 3 " in formu

the valu:
« - (6D

who, since 1921 {10], has repeatedly pro- 2 =
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Obviously, g, représents the relative frequency of pairs (X, ¥) which have their sum
- X + Y = r. The maximum likelihood equations are obtained by differentiating (43)
with respect to a, 8 and 4 and by equating the derivatives to zero. We have:

. 1- 34
(45) og—b — + 3 — = =0,
B+Ad+1 = 4+
w &_a+X+7_ o
B A+4+1
@ | 724X+ Y .
A B+4+1
Equations (46) and (47) imply
48) ' 3=X3,
«9) 7 =X4,
and then equation (45) gives ;
. . ‘ - = - 1 - gqr
(50) | log<1+X+Y>-z______
‘ & = a4t

The problem of computing the maximum likelihood estimates &, 8 and A is thus
reduced to the following operations. First we calculate the means X and ¥ of the
b observed values of X and Y, respectively, and the relative frequencies ¢, as indicated
. in formulse (44). Upon substituting them into (50) the trial and error method gives
vk the value of &. Next

(51) ﬁ = » ‘z ==

RN
i~

In trying to obtain & it is well to notice that the two sides of equation (50) tend to
the same limit zero as « is indefinitely increased. The first trial value, say a, may

“#8 I  be conveniently obtained as follows. We notice that the result of substituting &,
B fand 4 in
S s .
D= ¥ . =
:té 3 should give a result comparable to g Using equations (48) and (49) we have
%: ‘ % (53) A~ A . = hpued —
- B+Ad+1 &+X+7
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Thus, the first trial value of & can be taken to satisfy the equation

(54) | (aT—a—f—:>.'=4o
| +X+7

which is equivalent to ,
(55) ‘ log(l1+2) = — log %,

X+7Y

with z = (X + ¥)/a. In order to obtain a we makeagraph oftheloga.nthmc A

function

(56) y=log(l+2).

Next we plot the straight line -

(57) - y = —-1352_-5
X+Y

The two lines have two points in commbn, one at z;, = 0 and the other at z =
(X + ¥)/as, which is obtained graphically. When 2 is obtained, we get a0 =
X + V/a

4. Empirical test of the tundamental hypothesis. As mentioned before, the validity &
of the fundamental hypothesis considered in this paper and, in particular, of the '
joint bivariate negative binomial distribution (40), should be tested with respect %
to the particular types of accidents that may come under study. Thus, for example, g
if it is attempted to apply the conclusions of this paper to the selection of airplane '§
pilots through the use of an individual’s record of minor accidents during the years -3
before the training in order to obtain individuals with low proneness for aviation &%
accidents, then the validity of the fundamental hypothesis should be tested on obser- %
vations regarding the numbers X and Y of each kind of accident actually suffered 3§
by a number of individuals. Owing to the lack of data, no such test is possible at %
present. However, because of the far-reaching character of the fundamental hypoth- 3§
esis, it is of interest to inquire whether or not there are any accidents at all with 3§

respect to which this hypothesis is at least approximately true.

To investigate this point, formula (40) was tried in connection with the following
two sets of data. The first set was obtained through the courtesy of Dr. Rosedith §
Sitgreaves and Dr. W. M. Gafafer, to whom the authors are deeply indebted. Special i

thanks are due to Dr. J. G. Townsend, Chief, Division of Industrial Hygiene,

Public Health Service, Federal Security Agency, who released the data collected by 3§

the Division of Industrial Hygiene.

The data are concerned with two different categories of employees of an industrial
establishment: Group 1 = office workers, and Group 2 = industrial workers. For
each of these two groups the data list the numbers of cases of incapacity suffered

- during & period of time due to the following causes:

Cause 1 = Respiratory disease
Cause 2 = Digestive disease
Cause 3 = Nonindustrial injury
Cause 4 = Industrial injury
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Each case of incapacity from any of the four causes was treated as an accident of a
special category.

The other set of data on which the test of the fundamental hypothesis was made
is taken from the publication of Farmer and Chambers [3]. This is concerned with
accidents incurred by 166 London bus drivers during five successive years of service.
On these data, two tests of the model were made, once taking the experience of the

. first four years of service of each man as one variable and the experience of the fifth

as the other and then treating the number of accidents in the first year of service
as one of the two variables and the number of accidents in the subsequent four years
as the other.

: TABLE 1 ’
Test or THE VALDITY OF THE FUNDAMENTAL HYPorHxsis oN Two Sxrs or Dara
Dataom: - No. of i~ of P(xn)
R s 4 dividuals | goggom
Employees of an indusatrial
: concern . ,
Causelvs2,Gr.1....... 1.452 1.407 4.729 407 37 .10
Causelvs2, Gr.2....... 1.471 1.050 | 3.798 1272 95 Practically zero
Causelvs3,Gr.l....... 1.657 4.750 | 13.986 407 39 000
Causelvs3,Gr.2....... 1.688 4.734 | 15.075 1272 58 .00053
Cause2vs3,Gr.1....... 0.922 | 2.662 2.979 407" 18 .0017
Cause2vs3,Gr.2....... 0.848 2.377 3.978 1272 30 Practically zero
Cause3vs4,Gr.1....... 1.309 [ 28.046 | 8.421 407 3 .59
Cause3va4,Gr.2....... 1.385 3.888 0.740 1272 11 Practically sero
London bus drivers
Fifth year vs four first .
................. . 2.021 4.125 166 .35
................. 5.506 3.086 3.419 166 .21

Table 1 gives the results of all these tests. The first three columns give the values
of the estimated parameters of the distribution (40), the fourth column gives the
number of individuals to whorm the particular observations refer, the fifth the num-
ber of degrees of freedom in applying the x? test and the sixth the value of the prob-
ability P (x?) of obtaining a value of x? exceeding that observed.

Tables 2 to 11 give the bivariate distributions and the details of compa.nsons
between the theory and the observations summarized in table 1. Thin lines indicate
the boundaries of the particular cells. Heavy lines indicate the grouping adopted in
the application of the x* test. Observed frequencies are written in the upper left
corner of particular cells. The two other figures, each with one decimal digit, are the
expected frequency (on the left) and the contribution to x* of one particular cell
(if the expected frequency for that cell is 3 or more) or for a group of several adjoin-
ing cells. If the expected frequencies of several cells are found to be less than 3, then
they are grouped and the expected frequency is given for the entire group of cells
only.
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TABLE 6

Coxmnxsox oF OBsERVED AND TrEEORETICAL DISTRIBUTIONS OF INCAPACITIES
Cause 2 vs. Cause 3, Group 1 (Div. Ind. Hyg., U.S. Pub. Health Serv.)
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Ithllbeseenthatmthreeoutofthetencasessm&edtheﬁtprowdedbythe
bivariate negative binomial is excellent. In two additional cases, the fit is not very -

‘good but still passable. In the remaining five cases the fit is poor.

The data summarized in table 1 refer to three groups of workers and the three ’
samples contain 166, 407, and 1272 individuals, respectively. Cases of good and of 32}

badﬁtareunvenlydmtnbubedand in fact, in all cases relating to the largest

number the fit is ..w.d This suggests that, probably, the true dlstnbuhon of numbers 2

TABLE 8
Com’.snx#ou or OBsERVED AND TaxorrTIcAL DisTRmurions or Incaracrzzs
Cause 3 vs. Cause 4, Group 1 (Div. Ind. Hyg., U.S. Pub. Health Serv.)

. B ] 1 ]
4 2 ] i 1 i
NI e + i |
('f) 3  4s o8
g7 -
5 ! !
© | ! !
Ot g~ —+— —F
O ellig, =o' | |
o Ty R

Cause &4

of accidents does not coincide with the negative binomial in any of the cases studied.
However, the dxv ‘
must be only slight and to detect it one needs a substantial number of observations.

Furthermore, a closer examination of tables where the fit is poor suggests that this
may be due to coexistence of two distinctly different subgroups of individuals,

" one large and one relatively small, with two different machineries behind the distri-
bution of a.ccxden . Owing to the difference in weights, the bivariate negative bi-
the actual distribution in the larger subgroup. However, the

This conclusion is suggested by all the tables but the suggestion is pa.rticularly g |
table 9. It will be seen that the greatest contributions to the x?, -

presence of the djergent smaller subgroup spoils the fit.

strong in the sho
namely 13.9 and 8.0, come from the two cells 3 5 X, Y= 0) and 3 5 X, Y =1),
with the total expected number of individuals 6.9 as against the observed 19. How-
ever, if these two ¢ells are combined with the two corresponding cells in the same
rows, the contributions of the combined cells to the x? become 1.2 and 0.1 respec-

" tively and the x? sinks to a value just exceeding the 5 per cent point. Noticing

that the grouping performed concerns the total of 46 individuals as against the
sample of 1272, one is led to believe that, as far as the bulk of this sample is con-
cerned, the fundamental hypothesis is not seriously wrong and that the disagree-

ce between the actual distribution and the negative binomial 3
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ment noted is due to a relatively small admixture of individuals with an accident
proneness machinery different from that in the main body of data.

The general tentative conclusion is that cases do exist in which (a) the funda-
mental hypothesis applies approximately to accidents of two different types in-
curred during the same period of observation and (b) to the same kind of accidents
incurred in two successive periods of observation. In these circumstances it is plau-
sible that the fundamental hypothesis may be satisfied by two kinds of accidents
incurred during two different periods of observation.

TABLE 9
ComPaRISON or OBSERVED AND THEORETICAL DIsTRIBUTIONS OF INCAPACITIES
Cause 3 vs. Cause 4, Group 2 (Div. Ind. Hyg., U.S. Pub. Health Serv.)

2 3 4
Cause 4

Keepmg in mind that the subject of the present paper is the possibility of using

- accidents of one kind to predict the number of accidents of another kind, it was

thought useful to reproduce the regressions of the number of accidents of one kind
on the actual number of accidents of another kind. These regressions are given in
figures 1 to 5. In each the straight lines correspond to the linear equatxon (37) of re-
gression based on the fundamental hypothesis.

When inspecting these figures one should bear in mind that regrmon points

‘corresponding to large values of the independent variable depend upon very

moderate numbers of observations. Furthermore, as we have seen, the conditional
variance of one variable, say Y, given a fixed value of the other, say X, increases
with an increase in the value of X. ‘

It will be seen that in many cases the fit is excellent. This is particularly true for
regressions of the numbers of the less frequent accidents on those of the more fre-
quent ones. Furthermore, the observed regression points are generally closer to the
theoretical line for small values of the independent variable than for larger ones.
This circumstance is important because if and when the selection of personnel is
made on the ground of-the number of accidents, one would naturally select those
individuals who in the past had few accidents. The graphs of the regressions suggest
that the results of this kind of selection will be in a reasonable agreement with pre-
dictions based on the fundamental hypothesis.

1 1 7T T
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TABLE 10
CompARISON OF OBBERVED AND THEORETICAL DISTRIBUTIONS OF ACCIDENTS
First Year vs. Last Four Years (Farmer and Chambers)
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TABLE 11
¥ OBSERVED AND THEORETICAL DISTRIBUTIONS OF ACCIDENTS
Fifth year vs. First Four Years (Farmer and Chambers)

ff11111++f

- .

* ]

i
i

:' u [ rn

Eﬁﬂt
!ﬂﬂﬁi
P P |
:- I |
PR
:I]=WHA_J
ety

++++++¢+++++

Q\Nu{:.LnO\\)lOo@

~+++

!
24 7 ] ]

)
Q

o I 2z 3 45
No. of accidents in Fifth year

~++++++++++++++++++

o Lidil % .nm ‘:Em ‘j’f s




Lidal ool

Chida. au. e

-] { R
Yoo WHERE X = NO. OF AGCIDENTS IN FIRST YEAR
P Y = NO. OF ACCIDENTS IN NEXT 4 YEARS
0+
Vv
s / .
0 -
0 3 0
X
Y
ot 10 ¢ WHERE X = NO. OF ACCIDENTS IN FIFTH YEAR
i Yo Y = NO. OF ACGIDENTS IN FIRST 4 YEARS
sy ° s
° —_— ] . i
) s 10 o s 10 1S 20
x Y .
Fig. 1. Regression of X on ¥ and of ¥ on X.
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Fig. 2. Regression of X on ¥ and of ¥ on X. Where X = number of cases of digestive
disease, and ¥ = number of cases of respiratory disease.
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5. Measures of success in selection of personnel. In this section we study the
following question. Suppose that the fundamental hypothesis applies to certain
types of light and of severe accidents. Suppose further that the number ¥ of light
accidents incurred in the past is adopted as a criterion for selecting personnel in
order to diminish the number X of severe accidents to be incurred in the future.
Specifically, we shall assume that the individuals selected for the particular hazard-
ous employment will be all those for whom the number of light accidents ¥ < %
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Fig. 5. Regression of X on ¥ and of ¥ on X. Where X = number of cases of industrial
injury, and ¥ = number of cases of nonindustrial injury.

and a certain proportion Q of those for whom ¥ = k, where k and Q are so adjusted
that the total number of individuals selected for employment represent a predeter-

mined proportion P of available candidates.

In these circumstances, the interesting question is: what is the probab1hty that
in the following period of observation an individual selected for employment will
bave no severe accidents at all? This probability, say

(58) P(X =0|P},

'compa.red with the probabflity P{X = 0} in the unselected population, appears to

be a suitable measure of the success of the selection against severe accidents.
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In order to obtain P{X = 0} we use the probability generating function (39) o
X and Y and substitute in it u = 0 and » = 1. The result is ;

(59) PIX =0} = (ﬁ—) : :_ 1

+1

This, then, is the probability of no severe accidents during the forthcoming Denod

of observation for the nonselected population.
In order to compute (38), we first determine % and Q to satisfy the conditions

llmposed The probability generating function of Y is obtained from (39) by substi
tuting © = 1. Expanding the result in powers of » we get

(8 VTet+tm [ 4 >’" k]
(60) Py (m) = <B + A) m ! I(a) + 4/ B
The number % is determined by the condition ]
k-1 k
(61) > Pp(im) S P < > py(m) .
= () R
Then
k-1 ,:
62) Q=P - X pym).
m=0 pr-

Once &k and Q are found, then (58) is computed by a simple application of the

formula of Bayes with the use of (40).

PIx=0lP} = 5 [P“X =0 <} + QP{(XPT}E)T;; k)}]
(63)

_1[<ﬂ 8 ) LS, I’(a+m)<ﬁ >+Q<56+A >’=]
T PL\B+A+1 m'r(a) +A+1 +A4+1 ’

Suppose that for a given population of candidates for employment and for a given 1'
pair of kinds of accidents the values of a, 8 and 4 have been determined. Suppose 5.

further that the proportion P of candidates to be selected for employment is also
determined. In order to estimate the prospective success of selection of candidates
we first compute the standard of comparison (59) and then determine & and Q to
satisfy (61) and (62). Then these values are substituted into (63).

Naturally, the effect of selection of candidates depends on all four parameters
involved, on « and A characterizing the distribution of A in the population of candi- %

dates for employment, on the number 4 and on the proportion P of those to be
- selected. In the unselected population the expectation of A and its variance are
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" If the variance o} is very sma.ll—-—a.nd this will happen when 8 is a larger number—
' then even a very sharp selection will give practically no result. In the cases consid-
. ered in table 1 the values of 8 are moderate and, therefore, the prospects for selection

are promising. Turning to the other factors involved, it must be obvious that the
smaller Pis the sharper must be the selection and, therefore, the greater its effect.
Finally, the effect of selection depends considerably on the value of 4, which is the
ratio of the average frequencies of light and of severe accidents,

) _ED
(63) . « 4 ED

in the unselected population. Because of this interpretation the quotient A may be
called the modulus of the relative frequency of light accidents.

TABLE 12
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The actual numbers characterizing the possible effect of selection are of practical
importance. With this in mind table 12 and figures 6 and 7 were constructed. They
illustrate two hypothetical situations. In one of them the values of @ = 3 and 8 = 2
approximately coincide with those corresponding to the experience of the London
bus drivers (see table 1). In the other case, « = 3 and § = 1, so that both the expec-
tation of A and its variance are increased. The figures are intended to illustrate the
effect of selection corresponding to two different levels of sharpness of selection. In
one case we assume P = .125 and in the other P = .250. The value of the modulus
4 varies from 4 = 1 to A = 20. For a succession of increasing values of 4, table 12
gives the corresponding values of k and Q with which the proportion of selected
candidates will be equal to P. Figures 6 and 7 give the corresponding values of
P{X = 0|P}. The horizontal dashed line indicates the standard of comparison
P{X = 0}. It is seen that in both cases, when A is small, the effect of selection is
already noticeable. When 4 is substantial, say 4 2 5, then the probability of
avoiding severe accidents is considerably increased by selection. The practical con-
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clusion suggested by this result is that, in order that the selection of personnel on
the basis of light accidents incurred in the past be successful, it is desirable that the ‘B
average number of light accidents during the period of observation be large. This -
may be achieved either by taking a long period of observation (which may be im- 3
practicable) or by using some artifice to increase the exposure to light accidents

during a relatively short period of observation.

6. Joint distribution of the number of light accidents and of the number of sur- 3

vived severe accidents. As mentioned in the introduction, even if the fundamental .
hypothesis assumed in this paper is strictly satisfied with regard to a category of 3§
light accidents and a category of severe accidents, if these latter accidents are really '3
severe, then their number incurred during a fixed period of time will not follow the
negative binomial distribution. The reason is that from time to time a severe acci~ '
dent, occurring at the early part of the period of observation, will prove fatal to the %

individual concerned. As a result, there will be no exposure of this individual to
possible further severe accidents during the same period of observation. Thus, if

and when statistics relating to light and to severe accidents sustained by the same |
individual become available, then in order to be able to verify the fundamental

hypothesis and to estimate the constants involved, a new type of distribution will %

be necessary. This must take into account the fact that each severe accident may
lead to invalidism or to death for the individual concerned. The purpose of this
section is to consider this distribution. Our basic assumption, supplementing the g
fundamental hypothesis, will be that each individual involved in a severe accident F
has the same probability @ of surviving the accident and continuing the employment ¥
"with all its hazards. The alternative to such survival will be either death or retire- .§

ment from the particular employment. However, this distinction may be ignored

and we shall speak of two possibilities only: survival (in good health) or death (the !

latter meaning either actual death or retirement).

In connection with the change in the problem, we shall need new notation. The 3
letter ¥ will be used, as formerly, to denote the number of light accidents incurred §

by an individual during s period of observation. On the other hand, the letter X will

be used to denote the number of severe accidents that this individual will survive, §

incurred by the individual during the same or a different period of observation.

Thus, if an individual incurs three severe accidents and dies at the third, then for
this individual X = 2. In order to distinguish between deaths and survivals we 3

shall need a third random variable Z. This variable will be defined to be equal to ?"
zero if the particular individual survives all the penod of observation, and unity 3

if the individual does not.
The statistics of light and severe accidents may be divided into two categories.
First we postulate the availability of the numbers of light and of severe accidents

dents. The figures obtainable from these statistics will be the empirical counterpart
of the theoretical probabilities P{(X = k) (¥ = m)|Z = 0}. The second part, of the

statistics contemplated would. refer to individuals who died as a result of a severe

accident during the period of observation. The figures obtainable from such statistics
would correspond to probabilities P{(X = k) (Y = m)|{Z = 1}. The formulae for
the probability generating functions for these relative probabilities arise as limiting

‘for those individuals who survived the entire period of observation of severe acci- 3
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forms of generating functions deduced under the general hypotheses considerd in
Part II of this paper and are as follows: . .

. - Brl-9_ )
(66) Gy, ¥l 2m0 (% 9) +1—06u+ Al - v)) !

©67) Gz yize (%)

- _(B+1-0r ,1—0[ B g ]
B+1—0y—p 1=6uL[f+AQ—v)]* ~ [B+1—6tutAQ—v)d "

It is seen that for individuals who survive the peﬁod of observation of swere
accidents the joint distribution of the number ¥ of light accidents and of the num-
ber X of survived severe accidents is again a bivariate negative binomial. On the

other hand, for individuals who die as a result of a severe accident, the joint distri- _

bution of X and Y is more complicated, with probability generating function given
by formula (67). '

If and when the data on light and severe accidents are available, formulao ()
and (67) could be used to test the validity of the fundamental hypothesis assumol
in the present paper.
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